Radar rainfall estimates in an alpine environment using inverse hydrological modelling

Marx, A.; Kunstmann, H.; Bárdossy, A.; Seltmann, J.

The quality of hydrological modelling is limited due to the restricted availability of high resolution temporal and spatial input data such as temperature, global radiation, and precipitation. Radar-based rain measurements provide good spatial information. On the other hand, using radar data is accompanied by basic difficulties such as clutter, shielding, variations of Z/R-relationships, beam-resolution and attenuation. Instead of accounting for all errors involved separately, a robust Z/R-relationship is estimated in this study for the short range (up to 40 km distance) using inverse hydrological modelling for a continuous period of three months in summer 2001. River gauge measurements from catchment sizes around 100 km 2 are used to estimate areal precipitation and finally Z/R-relationships using a calibrated hydrological model. The study is performed in the alpine Ammer catchment with very short reaction times of the river gauges to rainfall events.

Zitieren

Zitierform:

Marx, A. / Kunstmann, H. / Bárdossy, A. / et al: Radar rainfall estimates in an alpine environment using inverse hydrological modelling. 2006. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: A. Marx et al.

Nutzung und Vervielfältigung:

Export