Combined MW-IR Precipitation Evolving Technique (PET) of convective rain fields

Di Paola, F.; Casella, D.; Dietrich, S.; Mugnai, A.; Ricciardelli, E.; Romano, F.; Sanò, P.

This paper describes a new multi-sensor approach for convective rain cell continuous monitoring based on rainfall derived from Passive Microwave (PM) remote sensing from the Low Earth Orbit (LEO) satellite coupled with Infrared (IR) remote sensing Brightness Temperature (TB) from the Geosynchronous (GEO) orbit satellite. The proposed technique, which we call Precipitation Evolving Technique (PET), propagates forward in time and space the last available rain-rate (RR) maps derived from Advanced Microwave Sounding Units (AMSU) and Microwave Humidity Sounder (MHS) observations by using IR TB maps of water vapor (6.2 μm) and thermal-IR (10.8 μm) channels from a Spinning Enhanced Visible and Infrared Imager (SEVIRI) radiometer. PET is based on two different modules, the first for morphing and tracking rain cells and the second for dynamic calibration IR-RR. The Morphing module uses two consecutive IR data to identify the motion vector to be applied to the rain field so as to propagate it in time and space, whilst the Calibration module computes the dynamic relationship between IR and RR in order to take into account genesis, extinction or size variation of rain cells. Finally, a combination of the Morphing and Calibration output provides a rainfall map at IR space and time scale, and the whole procedure is reiterated by using the last RR map output until a new MW-based rainfall is available. The PET results have been analyzed with respect to two different PM-RR retrieval algorithms for seven case studies referring to different rainfall convective events. The qualitative, dichotomous and continuous assessments show an overall ability of this technique to propagate rain field at least for 2–3 h propagation time.



Di Paola, F. / Casella, D. / Dietrich, S. / et al: Combined MW-IR Precipitation Evolving Technique (PET) of convective rain fields. 2012. Copernicus Publications.


12 Monate:

Grafik öffnen


Rechteinhaber: F. Di Paola et al.

Nutzung und Vervielfältigung: