Nonlinear run-ups of regular waves on sloping structures

Hsu, T.-W.; Liang, S.-J.; Young, B.-D.; Ou, S.-H.

For coastal risk mapping, it is extremely important to accurately predict wave run-ups since they influence overtopping calculations; however, nonlinear run-ups of regular waves on sloping structures are still not accurately modeled. We report the development of a high-order numerical model for regular waves based on the second-order nonlinear Boussinesq equations (BEs) derived by Wei et al. (1995). We calculated 160 cases of wave run-ups of nonlinear regular waves over various slope structures. Laboratory experiments were conducted in a wave flume for regular waves propagating over three plane slopes: tan α =1/5, 1/4, and 1/3. The numerical results, laboratory observations, as well as previous datasets were in good agreement. We have also proposed an empirical formula of the relative run-up in terms of two parameters: the Iribarren number ξ and sloping structures tan α. The prediction capability of the proposed formula was tested using previous data covering the range ξ ≤ 3 and 1/5 ≤ tan α ≤ 1/2 and found to be acceptable. Our study serves as a stepping stone to investigate run-up predictions for irregular waves and more complex geometries of coastal structures.



Hsu, T.-W. / Liang, S.-J. / Young, B.-D. / et al: Nonlinear run-ups of regular waves on sloping structures. 2012. Copernicus Publications.


12 Monate:

Grafik öffnen


Rechteinhaber: T.-W. Hsu et al.

Nutzung und Vervielfältigung: