Contribution to solving the orientation problem for an automatic magnetic observatory

Khokhlov, A.; Le Mouël, J. L.; Mandea, M.

The problem of the absolute calibration of a vectorial (tri-axial) magnetometer is addressed with the objective that the apparatus, once calibrated, gives afterwards, for a few years, the absolute values of the three components of the geomagnetic field (say the Northern geographical component, Eastern component and vertical component) with an accuracy on the order of 1 nT. The calibration procedure comes down to measure the orientation in space of the three physical axes of the sensor or, in other words, the entries of the transfer matrix from the local geographical axes to these physical axes. Absolute calibration follows indeed an internal calibration which provides accurate values of the three scale factors corresponding to the three axes – and in addition their relative angles. The absolute calibration can be achieved through classical absolute measurements made with an independent equipment. It is shown – after an error analysis which is not trivial – that, while it is not possible to get the axes absolute orientations with a high accuracy, the assigned objective (absolute values of the Northern geographical component, Eastern component and vertical component, with an accuracy of the order of 1 nT) is nevertheless reachable; this is because in the time interval of interest the field to measure is not far from the field prevailing during the calibration process.

Vorschau

Zitieren

Zitierform:

Khokhlov, A. / Le Mouël, J. L. / Mandea, M.: Contribution to solving the orientation problem for an automatic magnetic observatory. 2013. Copernicus Publications.

Rechte

Rechteinhaber: A. Khokhlov et al.

Nutzung und Vervielfältigung:

Export