On precipitation measurements collected by a weather radar and a rain gauge network

Sebastianelli, S.; Russo, F.; Napolitano, F.; Baldini, L.

Many phenomena (such as attenuation and range degradation) can influence the accuracy of rainfall radar estimates. They introduce errors that increase as the distance from radar increases, thereby decreasing the reliability of radar estimates for applications that require quantitative precipitation estimation. The present paper evaluates radar error as a function of the range, in order to correct the rainfall radar estimates. The radar is calibrated utilizing data from the rain gauges. Then, the G/R ratio between the yearly rainfall amount measured in each rain gauge position during 2008 and the corresponding radar rainfall amount is calculated against the slant range. The trend of the G/R ratio shows two behaviours: a concave part due to the melting layer effect close to the radar location and an almost linear, increasing trend at greater distances. A best fitting line is used to find an adjustment factor, which estimates the radar error at a given range. The effectiveness of the methodology is verified by comparing pairs of rainfall time series that are observed simultaneously by collocated rain gauges and radar. Furthermore, the variability of the adjustment factor is investigated at the scale of event, both for convective and stratiform events. The main result is that there is not a univocal range error pattern, as it also depends on the characteristics of the considered event. On the other hand, the adjustment factor tends to stabilize itself for time aggregations of the order of one year or greater.



Sebastianelli, S. / Russo, F. / Napolitano, F. / et al: On precipitation measurements collected by a weather radar and a rain gauge network. 2013. Copernicus Publications.


12 Monate:

Grafik öffnen


Rechteinhaber: S. Sebastianelli et al.

Nutzung und Vervielfältigung: