Fourier spectrum and shape evolution of an internal Riemann wave of moderate amplitude

Kartashova, E.; Pelinovsky, E.; Talipova, T.

The nonlinear deformation of long internal waves in the ocean is studied using the dispersionless Gardner equation. The process of nonlinear wave deformation is determined by the signs of the coefficients of the quadratic and cubic nonlinear terms; the breaking time depends only on their absolute values. The explicit formula for the Fourier spectrum of the deformed Riemann wave is derived and used to investigate the evolution of the spectrum of the initially pure sine wave. It is shown that the spectrum has exponential form for small times and a power asymptotic before breaking. The power asymptotic is universal for arbitrarily chosen coefficients of the nonlinear terms and has a slope close to –8/3.

Zitieren

Zitierform:

Kartashova, E. / Pelinovsky, E. / Talipova, T.: Fourier spectrum and shape evolution of an internal Riemann wave of moderate amplitude. 2013. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: E. Kartashova et al.

Nutzung und Vervielfältigung:

Export