Model reactions and natural occurrence of furans from hypersaline environments

Krause, T.; Tubbesing, C.; Benzing, K.; Schöler, H. F.

Volatile organic compounds like furan and its derivatives are important for atmospheric properties and reactions. In this work the known abiotic formation of furan from catechol under Fenton-like conditions with Fe 3+ sulfate was revised by the use of a bispidine Fe 2+ complex as a model compound for iron with well-known characteristics. While total yields were comparable to those with the Fe 3+ salt, the bispidine Fe 2+ complex is a better catalyst as the turnover numbers of the active iron species were higher. Additionally, the role of iron and pH is discussed in relation to furan formation from model compounds and in natural sediment and water samples collected from the Dead Sea and several salt lakes in Western Australia. Various alkylated furans and even traces of halogenated furans (3-chlorofuran and 3-bromofuran) were found in some Australian samples. 3-chlorofuran was found in three sediments and four water samples, whereas 3-bromofuran was detected in three water samples. Further, the emission of furans is compared to the abundance of several possible precursors such as isoprene and aromatic hydrocarbons as well as to the related thiophenes.

It is deduced that the emissions of volatile organic compounds such as furans contribute to the formation of ultra-fine particles in the vicinity of salt lakes and are important for the local climate.

Zitieren

Zitierform:

Krause, T. / Tubbesing, C. / Benzing, K. / et al: Model reactions and natural occurrence of furans from hypersaline environments. 2014. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: T. Krause et al.

Nutzung und Vervielfältigung:

Export