How to identify groundwater-caused thermal anomalies in lakes based on multi-temporal satellite data in semi-arid regions

Mallast, U.; Gloaguen, R.; Friesen, J.; Rödiger, T.; Geyer, S.; Merz, R.; Siebert, C.

The deduction by conventional means of qualitative and quantitative information about groundwater discharge into lakes is complicated. Nevertheless, at least for semi-arid regions with limited surface water availability, this information is crucial to ensure future water availability for drinking and irrigation purposes.

Overcoming this lack of discharge information, we present a satellite-based multi-temporal sea-surface-temperature (SST) approach. It exploits the occurrence of thermal anomalies to outline groundwater discharge locations using the example of the Dead Sea. Based on a set of 19 Landsat Enhanced Thematic Mapper (ETM+) images 6.2 (high gain), recorded between 2000 and 2002, we developed a novel approach which includes (i) an objective exclusion of surface-runoff-influenced data which would otherwise lead to erroneous results and (ii) a temporal SST variability analysis based on six statistical measures amplifying thermal anomalies caused by groundwater.

After excluding data influenced by surface runoff, we concluded that spatial anomaly patterns of the standard deviation and range of the SST data series spatially fit best to in situ observed discharge locations and, hence, are most suitable for detecting groundwater discharge sites.

Zitieren

Zitierform:

Mallast, U. / Gloaguen, R. / Friesen, J. / et al: How to identify groundwater-caused thermal anomalies in lakes based on multi-temporal satellite data in semi-arid regions. 2014. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: U. Mallast et al.

Nutzung und Vervielfältigung:

Export