Cloud tolerance of remote-sensing technologies to measure land surface temperature

Holmes, Thomas R. H.; Hain, Christopher R.; Anderson, Martha C.; Crow, Wade T.

Conventional methods to estimate land surface temperature (LST) from space rely on the thermal infrared (TIR) spectral window and is limited to cloud-free scenes. To also provide LST estimates during periods with clouds, a new method was developed to estimate LST based on passive-microwave (MW) observations. The MW-LST product is informed by six polar-orbiting satellites to create a global record with up to eight observations per day for each 0.25┬░ resolution grid box. For days with sufficient observations, a continuous diurnal temperature cycle (DTC) was fitted. The main characteristics of the DTC were scaled to match those of a geostationary TIR-LST product.

This paper tests the cloud tolerance of the MW-LST product. In particular, we demonstrate its stable performance with respect to flux tower observation sites (four in Europe and nine in the United States), over a range of cloudiness conditions up to heavily overcast skies. The results show that TIR-based LST has slightly better performance than MW-LST for clear-sky observations but suffers an increasing negative bias as cloud cover increases. This negative bias is caused by incomplete masking of cloud-covered areas within the TIR scene that affects many applications of TIR-LST. In contrast, for MW-LST we find no direct impact of clouds on its accuracy and bias. MW-LST can therefore be used to improve TIR cloud screening. Moreover, the ability to provide LST estimates for cloud-covered surfaces can help expand current clear-sky-only satellite retrieval products to all-weather applications.



Holmes, Thomas R. H. / Hain, Christopher R. / Anderson, Martha C. / et al: Cloud tolerance of remote-sensing technologies to measure land surface temperature. 2016. Copernicus Publications.


12 Monate:

Grafik öffnen


Rechteinhaber: Thomas R. H. Holmes et al.

Nutzung und Vervielfältigung: