Ozone air quality simulations with WRF-Chem (v3.5.1) over Europe: model evaluation and chemical mechanism comparison

Mar, Kathleen A.; Ojha, Narendra; Pozzer, Andrea; Butler, Tim M.

We present an evaluation of the online regional model WRF-Chem over Europe with a focus on ground-level ozone (O 3) and nitrogen oxides (NO x). The model performance is evaluated for two chemical mechanisms, MOZART-4 and RADM2, for year-long simulations. Model-predicted surface meteorological variables (e.g., temperature, wind speed and direction) compared well overall with surface-based observations, consistent with other WRF studies. WRF-Chem simulations employing MOZART-4 as well as RADM2 chemistry were found to reproduce the observed spatial variability in surface ozone over Europe. However, the absolute O 3 concentrations predicted by the two chemical mechanisms were found to be quite different, with MOZART-4 predicting O 3 concentrations up to 20 µg m −3 greater than RADM2 in summer. Compared to observations, MOZART-4 chemistry overpredicted O 3 concentrations for most of Europe in the summer and fall, with a summertime domain-wide mean bias of +10 µg m −3 against observations from the AirBase network. In contrast, RADM2 chemistry generally led to an underestimation of O 3 over the European domain in all seasons. We found that the use of the MOZART-4 mechanism, evaluated here for the first time for a European domain, led to lower absolute biases than RADM2 when compared to ground-based observations. The two mechanisms show relatively similar behavior for NO x, with both MOZART-4 and RADM2 resulting in a slight underestimation of NO x compared to surface observations. Further investigation of the differences between the two mechanisms revealed that the net midday photochemical production rate of O 3 in summer is higher for MOZART-4 than for RADM2 for most of the domain. The largest differences in O 3 production can be seen over Germany, where net O 3 production in MOZART-4 is seen to be higher than in RADM2 by 1.8 ppb h −1 (3.6 µg m −3 h −1) or more. We also show that while the two mechanisms exhibit similar NO x sensitivity, RADM2 is approximately twice as sensitive to increases in anthropogenic VOC emissions as MOZART-4. Additionally, we found that differences in reaction rate coefficients for inorganic gas-phase chemistry in MOZART-4 vs. RADM2 accounted for a difference of 8 µg m −3, or 40 % of the summertime difference in O 3 predicted by the two mechanisms. Differences in deposition and photolysis schemes explained smaller differences in O 3. Our results highlight the strong dependence of modeled surface O 3 over Europe on the choice of gas-phase chemical mechanism, which we discuss in the context of overall uncertainties in prediction of ground-level O 3 and its associated health impacts (via the health-related metrics MDA8 and SOMO35).

Zitieren

Zitierform:

Mar, Kathleen A. / Ojha, Narendra / Pozzer, Andrea / et al: Ozone air quality simulations with WRF-Chem (v3.5.1) over Europe: model evaluation and chemical mechanism comparison. 2016. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: Kathleen A. Mar et al.

Nutzung und Vervielfältigung:

Export