EFFICIENT LIDAR POINT CLOUD DATA MANAGING AND PROCESSING IN A HADOOP-BASED DISTRIBUTED FRAMEWORK

Wang, C.; Hu, F.; Sha, D.; Han, X.

Light Detection and Ranging (LiDAR) is one of the most promising technologies in surveying and mapping,city management, forestry, object recognition, computer vision engineer and others. However, it is challenging to efficiently storage, query and analyze the high-resolution 3D LiDAR data due to its volume and complexity. In order to improve the productivity of Lidar data processing, this study proposes a Hadoop-based framework to efficiently manage and process LiDAR data in a distributed and parallel manner, which takes advantage of Hadoop’s storage and computing ability. At the same time, the Point Cloud Library (PCL), an open-source project for 2D/3D image and point cloud processing, is integrated with HDFS and MapReduce to conduct the Lidar data analysis algorithms provided by PCL in a parallel fashion. The experiment results show that the proposed framework can efficiently manage and process big LiDAR data.

Zitieren

Zitierform:

Wang, C. / Hu, F. / Sha, D. / et al: EFFICIENT LIDAR POINT CLOUD DATA MANAGING AND PROCESSING IN A HADOOP-BASED DISTRIBUTED FRAMEWORK. 2017. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: C. Wang et al.

Nutzung und Vervielfältigung:

Export