Modelling plant invasion pathways in protected areas under climate change: implication for invasion management

Wang, Chun-Jing; Wan, Ji-Zhong; Qu, Hong; Zhang, Zhi-Xiang

Global climate change may enable invasive plant species (IPS) to invade protected areas (PAs), but plant invasion on a global scale has not yet been explicitly addressed. Here, we mapped the potential invasion pathways for IPS in PAs across the globe and explored potential factors determining the pathways of plant invasion under climate change. We used species distribution modelling to estimate the suitable habitats of 386 IPS and applied a corridor analysis to compute the potential pathways of IPS in PAs under climate change. Subsequently, we analysed the potential factors affecting the pathways in PAs. According to our results, the main potential pathways of IPS in PAs are in Europe, eastern Australia, New Zealand, southern Africa, and eastern regions of South America and are strongly influenced by changes in temperature and precipitation. Protected areas can play an important role in preventing and controlling the spread of IPS under climate change. This is due to the fact that measures are taken to monitor climate change in detail, to provide effective management near or inside PAs, and to control the introduction of IPS with a high capacity for natural dispersal. A review of conservation policies in PAs is urgently needed.

Zitieren

Zitierform:

Wang, Chun-Jing / Wan, Ji-Zhong / Qu, Hong / et al: Modelling plant invasion pathways in protected areas under climate change: implication for invasion management. 2017. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: Chun-Jing Wang et al.

Nutzung und Vervielfältigung:

Export