APPLYING RANDOM FOREST CLASSIFICATION TO MAP LAND USE/LAND COVER USING LANDSAT 8 OLI

Nguyen, H. T. T.; Doan, T. M.; Radeloff, V.

This study used the Random Forest classifier (RF) running in R environment to map Land use/Land cover (LULC) of Dak Lak province in Vietnam based on the Landsat 8 OLI. The values of two RF parameters of ntree (number of tree) and mtry (the number of variables used to split at each node) were tested and compared. In current study the best results indicate the number of suitable decision trees involved in the classification process is 300 (ntree), and the suitable number of variables used to split at each node is 4 variables (mtry). These parameters were used to classify 7 bands multi-spectral resolution from 1–7 of Landsat 8 into ten classes of LULC including natural broad-leaved evergreen, semi-evergreen, dipterocarp deciduous forest, plantation forest, rubber, coffee land, crop land, barren land, residential area and water surface. The overall accuracy of 90.32 % with Kappa coefficient of 0.8434 was found in this case.

Zitieren

Zitierform:

Nguyen, H. T. T. / Doan, T. M. / Radeloff, V.: APPLYING RANDOM FOREST CLASSIFICATION TO MAP LAND USE/LAND COVER USING LANDSAT 8 OLI. 2018. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: H. T. T. Nguyen et al.

Nutzung und Vervielfältigung:

Export