PRACTICAL APPROACH FOR HYPERSPECTRAL IMAGE PROCESSING IN PYTHON

Annala, L.; Eskelinen, M. A.; Hämäläinen, J.; Riihinen, A.; Pölönen, I.

Python is a very popular programming language among data scientists around the world. Python can also be used in hyperspectral data analysis. There are some toolboxes designed for spectral imaging, such as Spectral Python and HyperSpy, but there is a need for analysis pipeline, which is easy to use and agile for different solutions. We propose a Python pipeline which is built on packages xarray, Holoviews and scikit-learn. We have developed some of own tools, MaskAccessor, VisualisorAccessor and a spectral index library. They also fulfill our goal of easy and agile data processing. In this paper we will present our processing pipeline and demonstrate it in practice.

Zitieren

Zitierform:

Annala, L. / Eskelinen, M. A. / Hämäläinen, J. / et al: PRACTICAL APPROACH FOR HYPERSPECTRAL IMAGE PROCESSING IN PYTHON. 2018. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: L. Annala et al.

Nutzung und Vervielfältigung:

Export