DENSE MATCHING COMPARISON BETWEEN CENSUS AND A CONVOLUTIONAL NEURAL NETWORK ALGORITHM FOR PLANT RECONSTRUCTION

Xia, Y.; Tian, J.; d’Angelo, P.; Reinartz, P.

3D reconstruction of plants is hard to implement, as the complex leaf distribution highly increases the difficulty level in dense matching. Semi-Global Matching has been successfully applied to recover the depth information of a scene, but may perform variably when different matching cost algorithms are used. In this paper two matching cost computation algorithms, Census transform and an algorithm using a convolutional neural network, are tested for plant reconstruction based on Semi-Global Matching. High resolution close-range photogrammetric images from a handheld camera are used for the experiment. The disparity maps generated based on the two selected matching cost methods are comparable with acceptable quality, which shows the good performance of Census and the potential of neural networks to improve the dense matching.

Zitieren

Zitierform:

Xia, Y. / Tian, J. / d’Angelo, P. / et al: DENSE MATCHING COMPARISON BETWEEN CENSUS AND A CONVOLUTIONAL NEURAL NETWORK ALGORITHM FOR PLANT RECONSTRUCTION. 2018. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: Y. Xia et al.

Nutzung und Vervielfältigung:

Export