GEOS-Chem High Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications

Eastham, Sebastian D.; Long, Michael S.; Keller, Christoph A.; Lundgren, Elizabeth; Yantosca, Robert M.; Zhuang, Jiawei; Li, Chi; Lee, Colin J.; Yannetti, Matthew; Auer, Benjamin M.; Clune, Thomas L.; Kouatchou, Jules; Putman, William M.; Thompson, Matthew A.; Trayanov, Atanas L.; Molod, Andrea M.; Martin, Randall V.; Jacob, Daniel J.

Global modeling of atmospheric chemistry is a grand computational challenge because of the need to simulate large coupled systems of inline-formula∼100–1000 chemical species interacting with transport on all scales. Offline chemical transport models (CTMs), where the chemical continuity equations are solved using meteorological data as input, have usability advantages and are important vehicles for developing atmospheric chemistry knowledge that can then be transferred to Earth system models. However, they have generally not been designed to take advantage of massively parallel computing architectures. Here, we develop such a high-performance capability for GEOS-Chem (GCHP), a CTM driven by meteorological data from the NASA Goddard Earth Observation System (GEOS) and used by hundreds of research groups worldwide. GCHP is a grid-independent implementation of GEOS-Chem using the Earth System Modeling Framework (ESMF) that permits the same standard model to operate in a distributed-memory framework for massive parallelization. GCHP also allows GEOS-Chem to take advantage of the native GEOS cubed-sphere grid for greater accuracy and computational efficiency in simulating transport. GCHP enables GEOS-Chem simulations to be conducted with high computational scalability up to at least 500 cores, so that global simulations of stratosphere–troposphere oxidant–aerosol chemistry at C180 spatial resolution (inline-formula M2inlinescrollmathml normal 0.5 × normal 0.625 74pt11ptsvg-formulamathimgbc2e1bfedb764b4ddea5c0e950edf39c gmd-11-2941-2018-ie00001.svg74pt11ptgmd-11-2941-2018-ie00001.png ) or finer become routinely feasible.

Zitieren

Zitierform:

Eastham, Sebastian D. / Long, Michael S. / Keller, Christoph A. / et al: GEOS-Chem High Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications. 2018. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: Sebastian D. Eastham et al.

Nutzung und Vervielfältigung:

Export