Temporal variability in detrital 10Be concentrations in a large Himalayan catchment

Dingle, Elizabeth H.; Sinclair, Hugh D.; Attal, Mikaël; Rodés, Ángel; Singh, Vimal

Accurately quantifying sediment fluxes in large rivers draining tectonically active landscapes is complicated by the stochastic nature of sediment inputs. Cosmogenic inline-formula10Be concentrations measured in modern river sands have been used to estimate 10inline-formula2- to 10inline-formula4-year sediment fluxes in these types of catchments, where upstream drainage areas are often in excess of 10 000 kminline-formula2. It is commonly assumed that within large catchments, the effects of stochastic sediment inputs are buffered such that inline-formula10Be concentrations at the catchment outlet are relatively stable in time. We present 18 new inline-formula10Be concentrations of modern river and dated Holocene terrace and floodplain deposits from the Ganga River near to the Himalayan mountain front (or outlet). We demonstrate that inline-formula10Be concentrations measured in modern Ganga River sediments display a notable degree of variability, with concentrations ranging between inline-formula∼9000 and 19 000 atoms ginline-formula−1. We propose that this observed variability is driven by two factors. Firstly, by the nature of stochastic inputs of sediment (e.g. the dominant erosional process, surface production rates, depth of landsliding, degree of mixing) and, secondly, by the evacuation timescale of individual sediment deposits which buffer their impact on catchment-averaged concentrations. Despite intensification of the Indian Summer Monsoon and subsequent doubling of sediment delivery to the Bay of Bengal between inline-formula∼11 and 7 ka, we also find that Holocene sediment inline-formula10Be concentrations documented at the Ganga outlet have remained within the variability of modern river concentrations. We demonstrate that, in certain systems, sediment flux cannot be simply approximated by converting detrital concentration into mean erosion rates and multiplying by catchment area as it is possible to generate larger volumetric sediment fluxes whilst maintaining comparable average inline-formula10Be concentrations.



Dingle, Elizabeth H. / Sinclair, Hugh D. / Attal, Mikaël / et al: Temporal variability in detrital 10Be concentrations in a large Himalayan catchment. 2018. Copernicus Publications.


12 Monate:

Grafik öffnen


Rechteinhaber: Elizabeth H. Dingle et al.

Nutzung und Vervielfältigung: