A singular value decomposition framework for retrievals with vertical distribution information from greenhouse gas column absorption spectroscopy measurements

Ramanathan, Anand K.; Nguyen, Hai M.; Sun, Xiaoli; Mao, Jianping; Abshire, James B.; Hobbs, Jonathan M.; Braverman, Amy J.

We review the singular value decomposition (SVD) framework and use it for quantifying and discerning vertical information in greenhouse gas retrievals from column integrated absorption measurements. While the commonly used traditional Bayesian optimal estimation (OE) assumes a prior distribution in order to regularize the inversion problem, the SVD approach identifies principal components that can be retrieved from the measurement without explicitly specifying a prior mean and prior covariance matrix. We review the SVD method, explicitly recognize the use of an uninformative prior and show it to incur no bias from the choice of the prior. We also make the connection between the SVD method and the pseudo-inverse, which makes it more intuitive and easy to understand. We illustrate the use of the SVD method on an integrated path differential absorption CO2 lidar measurement model and verify our derivations and bias-free properties versus optimal estimation using numerical simulations. In contrast, traditional OE retrievals exhibit bias when the prior mean used in the retrieval differs from the true mean. Hence, the SVD method is particularly useful for situations in which knowledge of the prior mean and prior covariance of the true state (e.g., greenhouse gas profiles) is inadequate.

Zitieren

Zitierform:

Ramanathan, Anand K. / Nguyen, Hai M. / Sun, Xiaoli / et al: A singular value decomposition framework for retrievals with vertical distribution information from greenhouse gas column absorption spectroscopy measurements. 2018. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: Anand K. Ramanathan et al.

Nutzung und Vervielfältigung:

Export