Variations of the 630.0 nm airglow emission with meridional neutral wind and neutral temperature around midnight

Chiang, Chih-Yu; Tam, Sunny Wing-Yee; Chang, Tzu-Fang

The ISUAL payload onboard the FORMOSAT-2 satellite has often observed airglow bright spots around midnight at equatorial latitudes. Such features had been suggested as the signature of the thermospheric midnight temperature maximum (MTM) effect, which was associated with temperature and meridional neutral winds. This study investigates the influence of neutral temperature and meridional neutral wind on the volume emission rates of the 630.0 nm nightglow. We utilize the SAMI2 model to simulate the charged and neutral species at the 630.0 nm nightglow emission layer under different temperatures with and without the effect of neutral wind. The results show that the neutral wind is more efficient than temperature variation in affecting the nightglow emission rates. For example, based on our estimation, it would require a temperature change of 145 K to produce a change in the integrated emission rate by 9.8 km-photons cminline-formula−3 sinline-formula−1, while it only needs the neutral wind velocity to change by 1.85 minline-formula−1 sinline-formula−1 to cause the same change in the integrated emission rate. However, the emission rate features a local maximum in its variation with the temperature. Two kinds of tendencies can be seen regarding the temperature that corresponds to the turning point, which is named the turning temperature (inline-formulaTt) in this study: firstly, inline-formulaTt decreases with the emission rate for the same altitude; secondly, for approximately the same emission rate, inline-formulaTt increases with the altitude.



Chiang, Chih-Yu / Tam, Sunny Wing-Yee / Chang, Tzu-Fang: Variations of the 630.0 nm airglow emission with meridional neutral wind and neutral temperature around midnight. 2018. Copernicus Publications.


12 Monate:

Grafik öffnen


Rechteinhaber: Chih-Yu Chiang et al.

Nutzung und Vervielfältigung: