Molecular characterization of organic aerosol in the Himalayas: insight from ultra-high-resolution mass spectrometry

An, Yanqing; Xu, Jianzhong; Feng, Lin; Zhang, Xinghua; Liu, Yanmei; Kang, Shichang; Jiang, Bin; Liao, Yuhong

An increased trend in aerosol concentration has been observed in the Himalayas in recent years, but the understanding of the chemical composition and sources of aerosol remains poorly understood. In this study, molecular chemical composition of water-soluble organic matter (WSOM) from two filter samples collected during two high aerosol loading periods (denoted as P1 and P2) at a high-altitude station (Qomolangma Station, QOMS; 4276 m a.s.l.) in the northern Himalayas was identified using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR MS). More than 4000 molecular formulas were identified in each filter sample which were classified into two compound groups (CHO and CHON) based on their elemental composition, with both accounting for nearly equal contributions in number (45 %–55 %). The relative abundance weighted mole ratio of O∕Cw for P1 and P2 was 0.43 and 0.39, respectively, and the weighted double bond equivalents (DBEw), an index for the saturation of organic molecules, were 7.12 and 7.87, respectively. Although the O∕Cw mole ratio was comparable for CHO and CHON compounds, the DBEw was significantly higher in CHON compounds than CHO compounds. More than 50 % molecular formulas in the Van Krevelen (VK) diagram (H∕C vs. O∕C) were located in 1–1.5 (H∕C) and 0.2–0.6 (O∕C) regions, suggesting potential lignin-like compounds. The distributions of CHO and CHON compounds in the VK diagram, DBE vs. number of C atoms, and other diagnostic diagrams showed high similarities among each other, suggesting their similar source and/or atmospheric processes. Many formulas formed from biogenic volatile organic compounds (e.g., ozonolysis of α-pinene products) and biomass-burning-emitted compounds (e.g., phenolic compounds) were found in the WSOM, suggesting the important contribution of these two sources in the Himalayas. The high DBE and high fraction of nitrogen-containing aerosol can potentially impact aerosol light absorption in this remote region. Further comprehensive study is needed due to the complexity of organic aerosol and limited molecular number identified in this study.



An, Yanqing / Xu, Jianzhong / Feng, Lin / et al: Molecular characterization of organic aerosol in the Himalayas: insight from ultra-high-resolution mass spectrometry. 2019. Copernicus Publications.


Rechteinhaber: Yanqing An et al.

Nutzung und Vervielfältigung: