Interpretation of measured aerosol mass scattering efficiency over North America using a chemical transport model

Latimer, Robyn N. C.; Martin, Randall V.

Aerosol mass scattering efficiency affects climate forcing calculations, atmospheric visibility, and the interpretation of satellite observations of aerosol optical depth. We evaluated the representation of aerosol mass scattering efficiency (inline-formulaαsp) in the GEOS-Chem chemical transport model over North America using collocated measurements of aerosol scatter and mass from IMPROVE network sites between 2000 and 2010. We found a positive bias in mass scattering efficiency given current assumptions of aerosol size distributions and particle hygroscopicity in the model. We found that overestimation of mass scattering efficiency was most significant in dry (RH inline-formula<35 %) and midrange humidity (35 % inline-formula< RH inline-formula<65 %) conditions, with biases of 82 % and 40 %, respectively. To address these biases, we investigated assumptions surrounding the two largest contributors to fine aerosol mass, organic (OA) and secondary inorganic aerosols (SIA). Inhibiting hygroscopic growth of SIA below 35 % RH and decreasing the dry geometric mean radius, from 0.069 inline-formulaµm for SIA and 0.073 inline-formulaµm for OA to 0.058 inline-formulaµm for both aerosol types, significantly decreased the overall bias observed at IMPROVE sites in dry conditions from 82 % to 9 %. Implementation of a widely used alternative representation of hygroscopic growth following inline-formulaκ-Kohler theory for secondary inorganic (hygroscopicity parameter inline-formulaκ=0.61) and organic (inline-formulaκ=0.10) aerosols eliminated the remaining overall bias in inline-formulaαsp. Incorporating these changes in aerosol size and hygroscopicity into the GEOS-Chem model resulted in an increase of 16 % in simulated annual average inline-formulaαsp over North America, with larger increases of 25 % to 45 % in northern regions with high RH and hygroscopic aerosol fractions, and decreases in inline-formulaαsp up to 15 % in the southwestern U.S. where RH is low.

Zitieren

Zitierform:

Latimer, Robyn N. C. / Martin, Randall V.: Interpretation of measured aerosol mass scattering efficiency over North America using a chemical transport model. 2019. Copernicus Publications.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Rechteinhaber: Robyn N. C. Latimer

Nutzung und Vervielfältigung:

Export