A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water

Hiranuma, Naruki; Adachi, Kouji; Bell, David M.; Belosi, Franco; Beydoun, Hassan; Bhaduri, Bhaskar; Bingemer, Heinz; Budke, Carsten; Clemen, Hans-Christian; Conen, Franz; Cory, Kimberly M.; Curtius, Joachim; DeMott, Paul J.; Eppers, Oliver; Grawe, Sarah; Hartmann, Susan; Hoffmann, Nadine; Höhler, Kristina; Jantsch, Evelyn; Kiselev, Alexei; Koop, Thomas; Kulkarni, Gourihar; Mayer, Amelie; Murakami, Masataka; Murray, Benjamin J.; Nicosia, Alessia; Petters, Markus D.; Piazza, Matteo; Polen, Michael; Reicher, Naama; Rudich, Yinon; Saito, Atsushi; Santachiara, Gianni; Schiebel, Thea; Schill, Gregg P.; Schneider, Johannes; Segev, Lior; Stopelli, Emiliano; Sullivan, Ryan C.; Suski, Kaitlyn; Szakáll, Miklós; Tajiri, Takuya; Taylor, Hans; Tobo, Yutaka; Ullrich, Romy; Weber, Daniel; Wex, Heike; Whale, Thomas F.; Whiteside, Craig L.; Yamashita, Katsuya; Zelenyuk, Alla; Möhler, Ottmar

We present the laboratory results of immersion freezing efficiencies of cellulose particles at supercooled temperature (inline-formulaT) conditions. Three types of chemically homogeneous cellulose samples are used as surrogates that represent supermicron and submicron ice-nucleating plant structural polymers. These samples include microcrystalline cellulose (MCC), fibrous cellulose (FC) and nanocrystalline cellulose (NCC). Our immersion freezing dataset includes data from various ice nucleation measurement techniques available at 17 different institutions, including nine dry dispersion and 11 aqueous suspension techniques. With a total of 20 methods, we performed systematic accuracy and precision analysis of measurements from all 20 measurement techniques by evaluating inline-formulaT-binned (1 inline-formulaC) data over a wide inline-formulaT range (inline-formula−36 inline-formulaC inline-formula M7inlinescrollmathml < T < - normal 4 46pt10ptsvg-formulamathimg3b7a6b6ea4e55ac45ae2885dad986a21 acp-19-4823-2019-ie00001.svg46pt10ptacp-19-4823-2019-ie00001.png inline-formulaC). Specifically, we intercompared the geometric surface area-based ice nucleation active surface site (INAS) density data derived from our measurements as a function of inline-formulaT, inline-formulans,geo(T). Additionally, we also compared the inline-formulans,geo(T) values and the freezing spectral slope parameter (inline-formula M12inlinescrollmathml normal Δ normal log ( n normal s , normal geo ) / normal Δ T ) 83pt16ptsvg-formulamathimg8ec71e136abcca72f65a4b88c200015b acp-19-4823-2019-ie00002.svg83pt16ptacp-19-4823-2019-ie00002.png from our measurements to previous literature results. Results show all three cellulose materials are reasonably ice active. The freezing efficiencies of NCC samples agree reasonably well, whereas the diversity for the other two samples spans inline-formula≈ 10 inline-formulaC. Despite given uncertainties within each instrument technique, the overall trend of the inline-formulans,geo(T) spectrum traced by the inline-formulaT-binned average of measurements suggests that predominantly supermicron-sized cellulose particles (MCC and FC) generally act as more efficient ice-nucleating particles (INPs) than NCC with about 1 order of magnitude higher inline-formulans,geo(T).



Hiranuma, Naruki / Adachi, Kouji / Bell, David M. / et al: A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water. 2019. Copernicus Publications.


12 Monate:

Grafik öffnen


Rechteinhaber: Naruki Hiranuma et al.

Nutzung und Vervielfältigung: