Quantifying uncertainties due to chemistry modelling – evaluation of tropospheric composition simulations in the CAMS model (cycle 43R1)

Huijnen, Vincent; Pozzer, Andrea; Arteta, Joaquim; Brasseur, Guy; Bouarar, Idir; Chabrillat, Simon; Christophe, Yves; Doumbia, Thierno; Flemming, Johannes; Guth, Jonathan; Josse, Béatrice; Karydis, Vlassis A.; Marécal, Virginie; Pelletier, Sophie

We report on an evaluation of tropospheric ozone and its precursor gases in three atmospheric chemistry versions as implemented in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS), referred to as IFS(CB05BASCOE), IFS(MOZART) and IFS(MOCAGE). While the model versions were forced with the same overall meteorology, emissions, transport and deposition schemes, they vary largely in their parameterisations describing atmospheric chemistry, including the organics degradation, heterogeneous chemistry and photolysis, as well as chemical solver. The model results from the three chemistry versions are compared against a range of aircraft field campaigns, surface observations, ozone-sondes and satellite observations, which provides quantification of the overall model uncertainty driven by the chemistry parameterisations. We find that they produce similar patterns and magnitudes for carbon monoxide (CO) and ozone (inline-formulaO3), as well as a range of non-methane hydrocarbons (NMHCs), with averaged differences for inline-formulaO3 (CO) within 10 % (20 %) throughout the troposphere. Most of the divergence in the magnitude of CO and NMHCs can be explained by differences in OH concentrations, which can reach up to 50 %, particularly at high latitudes. There are also comparatively large discrepancies between model versions for inline-formulaNO2, inline-formulaSO2 and inline-formulaHNO3, which are strongly influenced by secondary chemical production and loss. Other common biases in CO and NMHCs are mainly attributed to uncertainties in their emissions. This configuration of having various chemistry versions within IFS provides a quantification of uncertainties induced by chemistry modelling in the main CAMS global trace gas products beyond those that are constrained by data assimilation.



Huijnen, Vincent / Pozzer, Andrea / Arteta, Joaquim / et al: Quantifying uncertainties due to chemistry modelling – evaluation of tropospheric composition simulations in the CAMS model (cycle 43R1). 2019. Copernicus Publications.


12 Monate:

Grafik öffnen


Rechteinhaber: Vincent Huijnen et al.

Nutzung und Vervielfältigung: