Physically controlled CO 2 effluxes from a reservoir surface in the upper Mekong River Basin: a case study in the Gongguoqiao Reservoir

Lin, Lin; Lu, Xixi; Liu, Shaoda; Liong, Shie-Yui; Fu, Kaidao

Impounding alters the carbon transport in rivers. To quantify this effect, we measured inline-formulaCO2 effluxes from a mountainous valley-type reservoir in the upper Mekong River (known as Lancang River in China). inline-formulaCO2 evasion rates from the reservoir surface were inline-formula408±337 mg inline-formulaCO2 minline-formula−2 dinline-formula−1 in the dry season and inline-formula305±262 mg inline-formulaCO2 minline-formula−2 dinline-formula−1 in the rainy season much lower than those from the riverine channels (inline-formula1567±2312 mg inline-formulaCO2 minline-formula−2 dinline-formula−1 at the main stem and inline-formula905±1536 mg inline-formulaCO2 minline-formula−2 dinline-formula−1 at the tributary). Low effluxes in the pelagic area were caused by low allochthonous organic carbon (OC) inputs and photosynthetic uptake of inline-formulaCO2. A negative relationship between inline-formulaCO2 efflux and water temperature suggested inline-formulaCO2 emissions at the pelagic area were partly offset by photosynthesis in the warmer rainy season. inline-formulaCO2 emissions from the reservoir outlet and littoral area, which were usually considered hotspots of inline-formulaCO2 emissions, had a low contribution to the total emission because of epilimnion water spilling and a small area of the littoral zones. Yet at the river inlets effluxes were much higher in the dry season than in the rainy season because different mixing modes occurred in the two seasons. When the river joined the receiving waterbody in the dry season, warmer and lighter inflow became an overflow and large amounts of inline-formulaCO2 were released to the atmosphere as the overflow contacted the atmosphere directly. Extended water retention time due to water storage might also help mineralization of OC. In the wet season, however, colder, turbid and heavier inflow plunged into the reservoir and was discharged downstream for hydroelectricity, leaving insufficient time for decomposition of OC. Besides, diurnal efflux variability indicated that the effluxes were significantly higher in the nighttime than in the daytime, which increased the estimated annual emission rate by half.



Lin, Lin / Lu, Xixi / Liu, Shaoda / et al: Physically controlled CO2 effluxes from a reservoir surface in the upper Mekong River Basin: a case study in the Gongguoqiao Reservoir. 2019. Copernicus Publications.


12 Monate:

Grafik öffnen


Rechteinhaber: Lin Lin et al.

Nutzung und Vervielfältigung: