Evaluation of differential absorption radars in the 183 GHz band for profiling water vapour in ice clouds

Battaglia, Alessandro; Kollias, Pavlos

Relative humidity (RH) measurements in ice clouds are essential for determining ice crystal growth processes and rates. A differential absorption radar (DAR) system with several frequency channels within the 183.3 inline-formulaGHz water vapour absorption band is proposed for measuring RH within ice clouds. Here, the performance of a DAR system is evaluated by applying a DAR simulator to A-Train observations in combination with co-located European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis. Observations from the CloudSat W-band radar and from the CALIPSO lidar are converted first into ice microphysical properties and then coupled with ECMWF temperature and relative humidity profiles in order to compute scattering properties at any frequency within the 183.3 inline-formulaGHz band. A self-similar Rayleigh–Gans approximation is used to model the ice crystal scattering properties. The radar reflectivities are computed both for a space-borne and airborne and a ground-based DAR system by using appropriate radar receiver characteristics. Sets of multi-frequency synthetic observation of attenuated reflectivities are then exploited to retrieve profiles of water vapour density by fitting the line shape at different levels. A total of 10 inline-formulad of A-Train observations are used to test the measurement technique performance for different combinations of tones when sampling ice clouds globally. Results show that water vapour densities can be derived at the level that can enable ice process studies (i.e. better than 3 %), both from a ground-based system (at the minute temporal scale and with circa 100 inline-formulam vertical resolution) and from a space-borne system (at 500 inline-formulam vertical resolution and with circa 5 inline-formulakm integration lengths) with four tones in the upper wing of the absorption line. Deploying ground-based DAR system at high latitudes and high altitudes is highly recommended to test the findings of this work in the field.



Battaglia, Alessandro / Kollias, Pavlos: Evaluation of differential absorption radars in the 183 GHz band for profiling water vapour in ice clouds. 2019. Copernicus Publications.


12 Monate:

Grafik öffnen


Rechteinhaber: Alessandro Battaglia

Nutzung und Vervielfältigung: