Dissolved organic carbon driven by rainfall events from a semi-arid catchment during concentrated rainfall season in the Loess Plateau, China

Wang, Linhua; Yen, Haw; E, Xinhui; Chen, Liding; Wang, Yafeng

Dissolved organic carbon (DOC) transported by runoff has been identified as an important role in the global carbon cycle. Despite there being many studies on DOC concentration and flux, little information is available for the semi-arid catchments of the Loess Plateau region (LPR). The primary goal of this study was to quantify DOC exported and driven by a sequence of rainfall events during the concentrated rainfall season. In addition, factors that affect DOC export from a small headwater catchment will be investigated accordingly. Runoff discharge and DOC concentration were monitored at the outlet of the Yangjuangou catchment in Yanan, Shaanxi Province, China. The results showed that DOC concentration was highly variable, with event-based DOC concentrations ranging from 5.14 to 13.14 mg L−1. Hysteresis analysis showed a nonlinear relationship between DOC concentration and flow rate in the hydrological process. The monthly DOC flux loading from the catchment was varied from 94.73 to 110.17 kg km−2, while the event-based DOC flux ranged from 0.18 to 2.84 kg km−2 in the period of June to September. Variations of event-driven DOC concentration contributed slightly to a difference in DOC flux, whereas intra-events of rainfall amount and runoff discharge led to evident differences in DOC export. In conclusion, our case results highlighted the advantages of high-frequency monitoring for DOC export and indicated that event-driven DOC export is largely influenced by the interaction of catchment hydrology and antecedent condition within a catchment. Engineers and scientists can take advantage of the derived results to better develop advanced field monitoring work. In addition, more studies are needed to investigate the magnitude of terrestrial DOC export in response to projected climate change at larger spatio-temporal scales, which may have implications for the carbon balance and carbon cycle model from an ecologically restored catchment in the LPR.

Zitieren

Zitierform:

Wang, Linhua / Yen, Haw / E, Xinhui / et al: Dissolved organic carbon driven by rainfall events from a semi-arid catchment during concentrated rainfall season in the Loess Plateau, China. 2019. Copernicus Publications.

Rechte

Rechteinhaber: Linhua Wang et al.

Nutzung und Vervielfältigung:

Export